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Introducing a new method for studying general probability distributions on Rn, we
generalize some results about the least singular value and the condition number of
random matrices with i.i.d. Gaussian entries to the whole class of random matrices with
i.i.d. rows.
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1. Introduction

The first important results about the least singular value σmin (̃X) and the condition number κ (̃X) of a square n × n
random matrix X̃ were obtained in 1988. Edelman (1988) computed the exact distribution of σmin (̃X) for a matrix of i.i.d.
complex standard Gaussian entries and the limiting distribution in the i.i.d. real standard Gaussian case. Kostlan (1988)
proved that E[κ (̃X)] = +∞ whenever the entries are i.i.d. real centred Gaussian, regardless of the matrix dimension.
In recent years, further results were obtained for the behaviour of σmin (̃X) and κ (̃X): while Huang and Tikhomirov
(2020) focused on the powers of Gaussian matrices, Rebrova and Tikhomirov (2018) and Rudelson and Vershynin (2008)
weakened the Gaussianity assumption and Adamczak et al. (2012), Tikhomirov (2020), Livshyts et al. (2019), Tatarko
(2018) even relaxed the assumption that the entries of the same row are i.i.d.

In particular, Adamczak et al. (2012) and Tikhomirov (2020) managed to prove, for n× n matrices of i.i.d. log-concave
rows, bounds of the type

P
(
σmin (̃X) ≤ ϵ

)
< f (n, ϵ)

which hold for fixed values of n and ϵ > 0, and with f (n, ϵ) → 0 as ϵ → 0+.
Then a natural aim could be to find how further these estimations can arrive and, moreover, to study what happens

outside the log-concave case.
In this paper we can prove that, in a right neighbourhood of 0, there exists a linear lower bound for the cumulative

distribution function of σmin (̃X) of a square random matrix, of every fixed dimension n, in the general setting of i.i.d. rows
without any additional assumption on the rows distribution.
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Indeed, under these only assumptions, we can prove our main results:

• lim inf
ϵ→0+

P
(
σmin (̃X) < ϵ

)
ϵ

> 0,

• E
[

1
σmin (̃X)

]
= E

[
∥X̃−1

∥

]
= +∞,

• E
[
κ (̃X)

]
= E

[
∥X̃∥∥X̃−1

∥

]
= +∞.

The first item generalizes the behaviour of the least singular value of i.i.d. real Gaussian entries. The last item generalizes
the result by Kostlan on the average condition number. Note that our results are trivial if P

(
σmin (̃X) = 0

)
> 0, which

happens whenever the distribution of the rows is discrete, such as in the Littlewood–Offord problem (see Tao and Vu,
2009 and all the linked articles).

Moreover, in the cases of a random matrix described by Adamczak et al. (2012) and Tikhomirov (2020), we get
additional results by combining our lower bound with their upper bounds. We prove that the probability of σmin (̃X) ∈

[0, ϵ) grows linearly with ϵ in a neighbourhood of 0, as well as we prove an interesting property of the moments of κ (̃X)
showing that the isotropic log-concave distribution has the best behaviour in terms of the well conditioning.

2. Notations

Given p ∈ N ∪ {+∞}, a vector x ∈ Rn and a square matrix A ∈ Rn×n, we introduce operator p-norms, based on the
usual vector ∥ · ∥p norm as

∥A∥p = max
∥x∥p=1

∥Ax∥p.

Moreover, if we denote by σmin(A) and σmax(A) the smallest and the largest singular value of A respectively, then we have

σmax(A) = ∥A∥2 = max
∥x∥2=1

∥Ax∥2, σmin(A) = min
∥x∥2=1

∥Ax∥2 =
1

∥A−1∥2
.

Finally, the condition number of A in matrix norm ∥ · ∥ on Rn×n is

κ(A) =

{
∥A∥ ∥A−1

∥, if A is invertible,
+∞, otherwise.

The condition number depends on the choice of the matrix norm, but different condition numbers are always pairwise
equivalent thanks to the pairwise equivalence of the norms. Lastly, in a given space Rn we are indicating with Bd(x), where
x ∈ Rn and d > 0, the 2-norm ball of radius d centred at x.

3. The moulds

Our results are based on the introduction of moulds, whose definition is motivated by the following well known result:
given a positive random variable W , if lim inft→+∞

(
1 − P(W ≤ t)

)
t = q > 0, then E[W ] = +∞.

Definition 1. Let X be a random vector in Rn. For every integer number m ≥ 0, the m-dimensional mould of X , denoted
by Cm(X), is the set of all x ∈ Rn such that

lim inf
ϵ→0+

P
(
∥X − x∥2 < ϵ

)
ϵm > 0.

Of course, every mould Cm(X) only depends on the distribution of X and, moreover, it does not change if we change
the vector norm in the definition. Then we can immediately prove the following important feature of the moulds.

Theorem 1. Let X be a random vector in Rn and let x ∈ Cm(X), m ≥ 1. Then

E
[

1
∥X − x∥m

]
= +∞.

Proof. By definition of mould, we know that lim infϵ→0+
P(∥X−x∥<ϵ)

ϵm > 0. Then the thesis comes from the above mentioned
property after the change of variable ϵ =

m
√
1/t .
2
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In order to usefully apply such a theorem, we need to explore some other features of the moulds. First of all, moulds
re a sequence of Borel sets that obviously grows with the index:

Cℓ(X) ⊆ Cm(X), ∀ℓ ≤ m. (1)

The measurability of each Cm(X) can be deduced from the following lemma, which allows to substitute the limit over
he continuous index ϵ → 0+ with a limit over a sequence tn → 0. The proof is straightforward.

emma 2.

lim inf
ϵ→0+

P
(
∥X − x∥2 < ϵ

)
ϵm > 0 ⇐⇒ lim inf

k→∞

P
(
∥X − x∥2 < 2−k

)
2−mk > 0.

Even if some Cm(X) can be empty, an important result holds for m = n.

Theorem 3. Let X be a random vector in Rn. Then P
(
X ∈ Cn(X)

)
= 1.

Proof. By contradiction, suppose that P
(
X ∈ Cn(X)

)
< 1. Then P

(
X ∈ Cn(X)c

)
> 0 and so there is a closed C ⊆ Cn(X)c

with P(X ∈ C) > 0.
Thus, µ(E) := P(X ∈ C ∩ E) defines a non-zero measure on the Borel sets. Anyway,

lim inf
ϵ→0+

µ(Bϵ(x))
ϵn = 0, ∀x ∈ Rn.

Indeed, the liminf holds both in C , by definition of Cn(X), and in C c , as this set is open and µ vanishes on the subsets of
c . Therefore, by Lemma 2,

lim inf
m→∞

µ(B2−m (x))
2−mn = 0, ∀x ∈ Rn. (2)

Since µ is not the zero measure, there exists a hypercube Q with µ(Q ) > 0, which means that µ(Q )
diam(Q )n = k > 0.

Now, if we cut Q into 2n identical hypercubes {Qi}i∈1,...,2n with half its diameter, for at least one of them we will have
µ(Q⋆)

diam(Q⋆)n
≥ k.

Iterating this process with Q = Q⋆, the centres of the hypercubes form a Cauchy sequence {xm}m converging to x ∈ Q
uch that

lim inf
m→∞

µ

(
{y : ∥x − y∥∞ < 2−m diam(Q )}

)
(2−m diam(Q ))n

≥ k > 0,

and so, by the equivalence of the infinity norm and the 2-norm, we obtain lim infm→∞

µ(B2−m (x))
2−mn > 0 which contradicts

(2) and completes the proof.

Thus, every random vector X in Rn takes values almost surely in its n-dimensional mould Cn(X). In particular Cn(X)
annot be empty. Depending on the distribution of X , such a property can be extended also to lower m-dimensional
moulds Cm(X). The proof is not difficult but a bit technical.

Theorem 4. Let X be random vector in Rn such that X ∈ B a.s., B being a Borelian subset of Rn. Suppose that there exists a
measurable function d : B → Rm and a number c > 0 such that

∥d(x) − d(y)∥ ≥ c ∥x − y∥, ∀x, y ∈ B.

Then P
(
X ∈ Cm(X)

)
= 1.

For example, Theorem 4 immediately implies that P
(
X ∈ Cm(X)

)
= 1 if X takes values almost surely in some

m-dimensional linear subspace of Rn.

4. n i.i.d. n-dimensional random vectors

Assumption 2. X1, . . . , Xn satisfy Assumption 2 if they are i.i.d. random vectors in Rn such that X1, . . . , Xn−1 are linearly
independent a.s. (n ≥ 2).

For example, Assumption 2 is satisfied by n i.i.d. random vectors with an absolutely continuous distribution in Rn.
Note that, in particular, this assumption ensures that there is a random vector Y with unit ∞-norm which is almost
surely orthogonal to X1, . . . , Xn−1. So we can state the main result of this section.
3
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heorem 5. Let X1, . . . , Xn be random vectors satisfying Assumption 2. Let Y be a random vector with unit ∞-norm which is
almost surely orthogonal to X1, . . . , Xn−1. Then

0 ∈ C1(Xn · Y ), E
[

1
|Xn · Y |

]
= +∞.

The proof of Theorem 5 takes the whole section and, of course, it relies on the introduction of moulds and their basic
roperties. We begin with the following property of Cn−1(Y ).

heorem 6. Let X1, . . . , Xn be random vectors satisfying Assumption 2. Let Y be a random vector with unit ∞-norm which is
almost surely orthogonal to X1, . . . , Xn−1. Then

Y ∈ Cn−1(Y ) a.s.

Proof. By construction, the random vector Y belongs to Sn−1
∞

=

{
v ∈ Rn

: ∥v∥∞ = 1
}
a.s. Since there exists a measurable

dilation d : Sn−1
∞

→ Rn−1, the thesis follows immediately by Theorem 4.

The next step is to study the special case of bounded X1, . . . , Xn, where we can prove the desired results by showing
a link between Cn−1(Y ) and the properties of Xn.

Theorem 7. Let X1, . . . , Xn be random vectors satisfying Assumption 2 and, moreover, let them be bounded. Let Y be a random
vector with unit ∞-norm which is almost surely orthogonal to X1, . . . , Xn−1. Then

1. y ∈ Cn−1(Y ) H⇒ 0 ∈ C1(Xn · y),
2. 0 ∈ C1(Xn · Y ),

3. E
[

1
|Xn · Y |

]
= +∞.

roof. We prove the theorem thesis by thesis.

1. Since X1, . . . , Xn are i.i.d., for every y ∈ Rn and for every ϵ > 0 we have

P
(
|Xn · y| < ϵ

)
=

n−1

√P

⎛⎝n−1⋂
j=1

(
|Xj · y| < ϵ

)⎞⎠.

Now, let us take r > 0 such that ∥Xj∥1 < r a.s., and let us denote by X̂ the R(n−1)×n random matrix with rows
Xj : 1 ≤ j ≤ n − 1.
Then we have the following relationships among events

n−1⋂
j=1

(
|Xj · y| < ϵ

)
=

(
∥X̂y∥∞ < ϵ

)
=

(
∥X̂(y − Y )∥∞ < ϵ

)
⊇

(
∥X̂∥∞∥y − Y∥∞ < ϵ

)
⊇

(
r∥y − Y∥∞ < ϵ

)
,

so that

lim inf
ϵ→0+

P
(
|Xn · y| < ϵ

)
ϵ

≥ lim inf
ϵ→0+

n−1

√P
(
∥Y − y∥∞ < ϵ/r

)
ϵn−1 .

Therefore 0 ∈ C1(Xn · y) for every y ∈ Cn−1(Y ).
2. Using Fubini–Tonelli theorem and Fatou’s lemma, we have

lim inf
ϵ→0+

P
(
|Xn · Y | < ϵ

)
ϵ

= lim inf
ϵ→0+

∫
Rn P

(
|Xn · y| < ϵ

)
dPY (y)

ϵ

≥

∫
n
lim inf
ϵ→0+

P
(
|Xn · y| < ϵ

)
ϵ

dPY (y)

R

4
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Since lim infϵ→0+
P(|Xn·y|<ϵ)

ϵ
> 0 for every y in the support of Y (see previous point), by monotonicity we have∫

Rn
lim inf
ϵ→0+

P
(
|Xn · y| < ϵ

)
ϵ

dPY (y) > 0

which entails the thesis.
3. Thesis 3 follows immediately from thesis 2 thanks to Theorem 1.

Finally we can prove Theorem 5.

Proof of Theorem 5. The result is already proved for bounded random vectors thanks to Theorem 7. Then, taken a ρ > 0
such that the event

Eρ =

n⋂
i=1

(
∥Xi∥ < ρ

)
has positive probability, it is enough to consider the conditional probability Pρ(·) = P(·|Eρ). Indeed for every ϵ > 0

P
(
|Xn · Y | < ϵ

)
ϵ

≥

Pρ

(
|Xn · Y | < ϵ

)
ϵ

P(Eρ),

where the right hand side has a strictly positive liminf as ϵ → 0+ by Theorem 7, as the random vectors X1, . . . , Xn are
bounded under Pρ and it is a straightforward verification that they are also Pρ-i.i.d. and still satisfy Assumption 2.

Therefore 0 ∈ C1(Xn · Y ) and the full thesis follows by Theorem 1.

5. Least singular value σmin(X̃)

Thanks to the introduction of the definition of moulds for a random vector (Section 3) and thanks to the properties
deduced for an n-uple of i.i.d. random vectors in Rn (Section 4), we can finally come to our main results. Let us start with
the least singular value.

5.1. The main result for σmin (̃X)

Theorem 8. Let X̃ be a square random matrix with i.i.d. rows. Then

0 ∈ C1

(
σmin (̃X)

)
i.e. lim inf

ϵ→0+

P
(
σmin (̃X) < ϵ

)
ϵ

> 0,

and, if X̃ is invertible almost surely,

E
[

1
|σmin (̃X)|

]
= E

[
∥X̃−1

∥

]
= +∞.

Proof. If the random matrix X̃ is singular with positive probability the thesis is trivial. Otherwise its rows X1, . . . , Xn
satisfy Assumption 2 and we can consider the random vector Y of Theorem 5. Then it is enough to observe that, since
∥Y∥∞ = 1 and so ∥Y∥2 ≥ 1,(

σmin (̃X) < ϵ

)
=

(
min

∥y∥2=1
∥X̃ y∥2 < ϵ

)
⊇

(
∥X̃ Y∥2

∥Y∥2
< ϵ

)
⊇

(
∥X̃ Y∥2 < ϵ

)
=

(
|Xn · Y | < ϵ

)
,

to deduce

lim inf
ϵ→0+

P
(
σmin (̃X) < ϵ

)
ϵ

≥ lim inf
ϵ→0+

P
(
|Xn · Y | < ϵ

)
ϵ

> 0.

The full thesis then follows thanks to Theorem 1.

Since the least singular value is invariant under transposition, the theorem holds for matrices with i.i.d. columns, too.
Theorem 8 implies that, in a right neighbourhood of 0, there exists a linear lower bound for the cumulative distribution

function of σmin (̃X). Of course, such a bound is not always optimal, as for example in the discrete case. However, for the
large class of log-concave distributions, some results from the literature will complete our results with proper upper
bounds.
5
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.2. Additional results for σmin (̃X) in the isotropic log-concave case

A distribution is log-concave if it is absolutely continuous with a density f such that

f (λx + (1 − λ)y) ≤ f (x)λf (y)1−λ, ∀λ ∈ (0, 1).

The study of random matrices with log-concave rows or columns is related to some geometric applications which arise
in the study of sampling on convex bodies, as shown by Adamczak et al. (2012).

Summing up our result and the ones of Adamczak et al. (2012, corollary 2.14) and Tikhomirov (2020, corollary 2.14)
we get the following corollary.

Theorem 9. Let X̃ be a random matrix with i.i.d. rows drawn from a zero-mean log-concave distribution. Then, for every δ > 0
here exist 0 < k1 < k2 such that

k1ϵ < P
(
σmin (̃X) < ϵ

)
< k2ϵ1−δ

where k2 = Cδ

√
n and Cδ only depends on δ) holds for sufficiently small ϵ > 0. Moreover, there exists a universal constant n0

uch that, if the size of X̃ is greater than n0, then

k1ϵ < P
(
σmin (̃X) < ϵ

)
< k2ϵ

where k2 = C
√
n and C is a universal constant) holds for sufficiently small ϵ > 0.

. Condition number κ(X̃)

From the results proved for σmin (̃X), we can derive a theorem on E
[
κ (̃X)

]
.

.1. The main result for κ (̃X)

heorem 10. Let X̃ be a square random matrix with i.i.d. rows. Then, for every choice of the matrix norm,

E
[
κ (̃X)

]
= +∞.

roof. If the random matrix X̃ is singular with positive probability the thesis is trivial. Otherwise, when X̃ is invertible
.s., it is enough to prove the theorem for the operator norm induced by the norm infinity of Rn, as condition numbers
re pairwise equivalent for a change of the matrix norm.
We prove the theorem in two steps, first for rows X1, . . . , Xn bounded from below, then for the general case of X̃

nvertible a.s.

1. If ∥X1∥1 > ρ a.s. for some ρ > 0, then the thesis immediately follows. Indeed, such a condition gives ∥X̃∥∞ =

maxi ∥Xi∥1 > ρ a.s. and so, by Theorem 8,

E
[
κ∞ (̃X)

]
= E

[
∥X̃∥∞ ∥X̃−1

∥∞

]
> ρ E

[
∥X̃−1

∥

]
= +∞.

2. If X̃ is invertible a.s., then P
(
∥Xi∥ > 0

)
= 1 and, by monotonicity, there exists ρ > 0 such that P

(
∥X1∥1 > ρ

)
> 0.

Thus, the event Eρ =
⋂n

i=1

(
∥Xi∥1 > ρ

)
has positive probability and we can consider the conditional probability

Pρ(·) = P(·|Eρ). As P(A) ≥ Pρ(A)P(Eρ) for every event A, we also have E[W ] ≥ Eρ[W ]P(Eρ) for every random
variable W ≥ 0. Thus E

[
κ (̃X)

]
≥ Eρ

[
κ (̃X)

]
P(Eρ) = +∞ by step 1, as the random vectors X1, . . . , Xn are bounded

from below under Pρ and it is a straightforward verification that they are also Pρ-i.i.d. and satisfy Assumption 2.

This theorem is a generalization of Kostlan (1988, theorem 5.2), which is proved for a randommatrix with i.i.d. Gaussian
entries.

6.2. Additional results for κ (̃X) in the isotropic log-concave case

Again, Adamczak et al. (2012) proved an upper bound for κ (̃X) (Corollary 2.15) in the isotropic log-concave case. Their
result bounds the probability that κ (̃X) is high, and it is equivalent to say that E

[
κ (̃X)1−δ

]
< +∞ for any δ > 0; thus, it

can be merged with Theorem 10 to obtain the following corollary.

Theorem 11. Let X̃ be a square random matrix with i.i.d. isotropic log-concave rows. Then

E
[
κ (̃X)α

]
< +∞ ⇐⇒ α < 1.
6
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